EI SEVIED

Contents lists available at ScienceDirect

Pharmacology, Biochemistry and Behavior

journal homepage: www.elsevier.com/locate/pharmbiochembeh

Intrastriatal injection of hypoxanthine impairs memory formation of step-down inhibitory avoidance task in rats

Caren Serra Bavaresco, Juliana Ben, Fabria Chiarani, Carlos Alexandre Netto, Angela Terezinha de Souza Wyse*

Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

ARTICLE INFO

Article history:
Received 29 January 2008
Received in revised form 28 April 2008
Accepted 3 May 2008
Available online 13 May 2008

Keywords: Lesch–Nyhan disease Intrastriatal hypoxanthine administration Memory Step-down inhibitory avoidance task

ABSTRACT

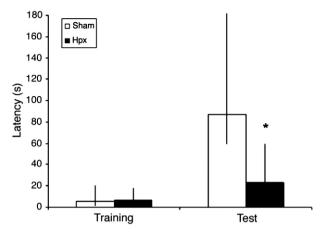
The aim of this study was to investigate the effects of intrastriatal injection of hypoxanthine, the major compound accumulated in Lesch–Nyhan disease, on performance step-down inhibitory avoidance task in the rat. Male adult Wistar rats were divided in two groups: (1) saline-injected and (2) hypoxanthine-injected group. Treated-group received intrastriatal hypoxanthine solution 30min before training session (memory acquisition) or immediately after training session (memory consolidation) or 30 before test session (memory retrieval) on step-down inhibitory avoidance task. Results show that hypoxanthine administration caused significant memory impairment in all periods tested. These results show that intrastriatal hypoxanthine administration provoked memory process impairment of step-down inhibitory avoidance task, an effect that might be related to the cognitive memory alterations in Lesch–Nyhan patients.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Tissue accumulation of hypoxanthine occurs in patients with Lesch–Nyhan disease, an X-linked hereditary disorder caused by deficiency of hypoxanthine–guanine phosphoribosyltranspherase (HPRT) activity (Nyhan et al., 1965). Affected patients present cognitive deficits, hyperuricemia, spasticity, dystonia and self-mutilation behavior characterized by biting of the lips, tongue and fingers with apparent tissue loss (Jinnah and Friedmann, 2001; Matthews et al., 1999). In addition, studies also show that affected patients present dysfunction of dopamine transmitter system in basal ganglia and a reduction of striatum volume (Jinnah and Friedmann, 2001; Palmour et al., 1989).

Accumulation of hypoxanthine has been proposed to contribute to neurological dysfunction presented in patients with Lesch–Nyhan disease (Brunori, 2001; Kisch et al., 1985; Ma et al., 2001; Visser et al., 2000). In this context, Bavaresco et al. (2007a) demonstrated that intrastriatal injection of hypoxanthine in rats, at the concentration found in Lesch–Nyhan patients, significantly impaired spatial learning/memory in the acquisition phase of the Morris Water Maze and


E-mail address: wyse@ufrgs.br (A.T. de Souza Wyse).

decreased striatal levels of serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA). Beside this, Ägren et al. (1983) indicated correlations between higher levels of hypoxanthine in cerebrospinal fluid (CSF) and memory disturbance.

We also showed a decrease on Na⁺, K⁺–ATPase activity and total radical-trapping antioxidant parameter (TRAP) in striatum, hippocampus and cerebral cortex of rats, as well as an increase in chemiluminescence, in the same cerebral structures, 30min after hypoxanthine infusion in rat striatum (Bavaresco et al., 2007b). In addition, studies show that hypoxanthine may affect neuronal development by enhancing cell proliferation and impairing morphogenesis (Ma et al., 2001).

It has been shown that hypoxanthine infusion impairs memory in task of water Maze in rats (Bavaresco et al., 2007a). Other tasks, like step-down inhibitory avoidance, a conditioned avoidance response task (Rossato et al., 2006) in which declarative or spatial component of a task can be evaluated also are important to evaluate memory/learning (Bavaresco et al., 2007a). Evidence from literature pointed that lesions to central structures could affect the acquisition, consolidation and retrieval memory phases indicating behavioral differences between memory processes in the first few hours or in the following few days, which suggest participation of different mechanisms (Medina et al., 1999). Studies demonstrated that the dorsal striatum is involved in various types of learning/memory such as procedural learning, habit learning, reward-association and emotional learning (Boussaoud and Kermadi, 1997; Ragozzino et al., 2001; Gill and Mizumori, 2006; Ferreira et al., 2008). In this context, Packard et

^{*} Corresponding author. Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil. Tel.: +55 51 33085573.

Fig. 1. Effect of intrastriatal hypoxanthine infusion 30 min before training on step-down inhibitory avoidance task. (a) Data are median (interquartile range) of 9–11 animals in each group. *Different from the control group (Mann–Whitney; p<0.05).

al. (2006) showed that post-training infusion of metabotropic glutamate receptor (mGluR) antagonist in dorsal striatum impaired retention on step-down inhibitory avoidance task. Moreover, it has been proposed that Na⁺, K⁺–ATPase activity inhibition (Wyse et al., 2004) and oxidative stress induction (Delwing et al., 2006; Reis et al., 2002) could impair memory formation in rats.

In the present study we investigated the effect of intrastriatal hypoxanthine infusion on step-down inhibitory avoidance task at different periods. The drug was infused into the striatum because patients with this syndrome present characteristic alterations in the basal ganglia (Jinnah and Friedmann, 2001).

2. Materials and methods

2.1. Animals and reagents

Sixty-days-old male Wistar rats were obtained from the Central Animal House of the Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil. Animals were maintained on a 12 h light/dark cycle (lights on from 7 a.m. to 7p.m.) in airconditioned constant temperature (22°C) colony room, with free access to a 20% (w/w) protein commercial chow and water. Animal care followed the official governmental guidelines in compliance with the Federation of Brazilian Society for Experimental Biology and was approved by Ethics Committee of the Federal University of Rio Grande do Sul, Brazil. All chemicals were purchased from Sigma Chemical Co., St Louis, MO, USA.

2.2. Stereotaxic surgery and cannula placement

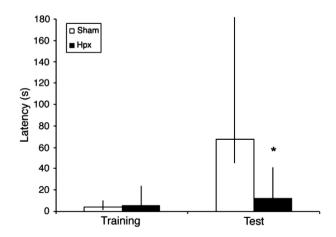
Rats were anesthetized with ketamine and xilazine (75 and 10mg/kg ip, respectively) and placed in a rodent stereotaxic apparatus. Under stereotaxic guidance, a 27-gauge stainless cannula (0.9mm O.D.) with an inner needle guide was inserted unilaterally into the right striatum (coordinates relative from bregma: AP, — 0.5mm; ML — 2.5mm; V — 2.5mm from the dura) (Paxinos and Watson, 1986). In our experiments, we utilized a single cannula implanted into the striatum as described by Sánchez-Iglesias et al. (2007). Two days after the surgery, a 30-gauge needle was inserted into the guide cannula in order to inject buffered hypoxanthine (10μM) or vehicle (saline) into the right striatum over a 1min interval. The volume administered (saline or hypoxanthine) was 2μL. Animals were divided into two groups: group 1 (vehicle group), rats that received intrastriatal saline and group 2 (hypoxanthine-treated), rats that received intrastriatal

hypoxanthine solution (20pmol/2µL). Hypoxanthine concentration was chosen according to Puig et al. (1989).

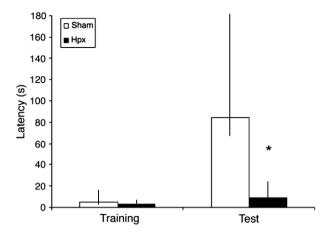
2.3. Drug administration procedure

In order to evaluate the effect of hypoxanthine on memory processing phases (acquisition, consolidation and retrieval), drugs were infused into the right striatum at different periods: 30min before training session (memory acquisition), immediately after training session (memory consolidation) and 30min before test session (memory retrieval).

2.4. Behavioral procedures


2.4.1. Step-down inhibitory avoidance task

On the 63rd day of life, animals were subjected to behavioral testing. We used the step-down inhibitory avoidance task since it has been widely used in the study of memory formation (Izquierdo and Medina, 1997; Prado-Alcalá et al., 2003; Wyse et al., 2004); behavioral experiments were conducted between 11h a.m. and 15h p.m.


Animals were subjected to training and test sessions in a step-down inhibitory avoidance task with an interval of 24h in between (Izquierdo and Medina, 1997). This task involves learning not to step-down from a platform in order to avoid a mild foot shock (Izquierdo and Medina, 1997). The task was carried out in an automatically operated, brightly illuminated box. The left extreme of the grid was covered by a 7.0cm wide, 2.5cm high formic platform. Animals were placed on the platform and their latency to step-down, placing their four paws on the grid (42.0×25.0cm grid of parallel 0.1cm caliber stainless steel bars spaced 1.0cm apart), was measured. In test sessions, no foot shock was delivered and step-down latency (with a ceiling of 180s) was used as a measure of memory retention, as described in previous reports (Izquierdo and Medina, 1997; Reis-Lunardelli et al., 2007).

2.5. Statistical analysis

Differences between test and training latency differences on inhibitory avoidance task were assessed by individual (two tailed) Mann–Whitney U tests, p < 0.05 was considered significant. Descriptive statistics data were expressed as median (interval interquartile).

Fig. 2. Effect of intrastriatal hypoxanthine infusion immediately after training on step-down inhibitory avoidance task. (a) Data are median (interquartile range) of 11-12 animals in each group. *Different from the control group (Mann–Whitney; p < 0.05).

Fig. 3. Effect of intrastriatal hypoxanthine infusion 30 min before test session on step-down inhibitory avoidance task. (a) Data are median (interquartile range) of 8–9 animals in each group. *Different from the control group (Mann–Whitney; p < 0.05).

All analyses were performed using the Statistical Package for the Social Science (SPSS) software in a PC-compatible computer.

3. Results

3.1. Experiment 1: effect of intrastriatal hypoxanthine infusion 30min before training session on step-down inhibitory avoidance task

Fig. 1 shows the effect of intrastriatal hypoxanthine infusion 30min before training on step-down inhibitory avoidance task. Latency differences in training were not significant among control and hypoxanthine groups in Mann–Whitney U test (U = 45.50, p>0.05). Latency differences in test performance were significant among control and hypoxanthine groups according to Mann–Whitney U test (U = 18.00, p<0.05).

3.2. Experiment 2: effect of intrastriatal hypoxanthine infusion immediately after training session on step-down inhibitory avoidance task

Fig. 2 shows the effect of intrastriatal hypoxanthine infusion immediately after step-down inhibitory avoidance training. Latency differences in training were not significant among control and hypoxanthine groups ($U=64.00,\ p>0.05$), however there was a latency differences in test performance were significant among control and hypoxanthine groups according to Mann–Whitney U test ($U=26.00,\ p<0.05$).

3.3. Experiment 3: effect of intrastriatal hypoxanthine infusion 30min before test session on step-down inhibitory avoidance task

Fig. 3 illustrates the effect of intrastriatal hypoxanthine infusion 30min before test session on step-down inhibitory avoidance task. Latency differences in training were not significant (U = 23.00, p > 0.05), however, latency differences in test performance were significant among control and hypoxanthine groups according to Mann–Whitney U test (U = 15.00, p < 0.05).

4. Discussion

In the present study we investigated the effect of intrastriatal hypoxanthine administration on step-down inhibitory avoidance task. Our results demonstrate that hypoxanthine infusion, at the concentration found in Lesch–Nyhan patients, significantly impaired learning/memory 30min before training or test session as well as

immediately after training. This is in agreement with a previous work which showed a significant impairment on learning/memory on the Morris Water Maze task (Bavaresco et al., 2007a). The results obtained in our study probably are not attributed to motor deficits, since we have previously demonstrated that hypoxanthine administration did not alter the open field task (Bavaresco et al., 2007a).

Although the exact mechanism through which hypoxanthine alters learning/memory in rats is still unknown, it has been showed that modulation of Na⁺, K⁺-ATPase activity is a fundamental mechanism for learning/memory (Brunelli et al., 1997; Reis-Lunardelli et al., 2007; Sato et al., 2004), for long-term potentiation (LTP) induction (Glushchenko and Izvarina, 1997) and learning in distinct models (Brunori, 2001). For instance, bilateral infusion of ouabain, a specific inhibitor of Na⁺, K⁺-ATPase activity, on chick forebrain causes inhibition on consolidation phase with retention loss persisting at least 24h after training (Gibbs et al., 2003; Sherry and Crowe, 2007) and another study showed Na⁺, K⁺-ATPase inhibition in rat hippocampus immediately and 6h after training session on inhibitory avoidance task (Wyse et al., 2004).

It has been shown that 30min after intrastriatal hypoxanthine infusion, Na⁺, K⁺-ATPase activity in striatum, hippocampus and cerebral cortex of rats was significantly decreased (Bavaresco et al., 2007b). Moreover, hypoxanthine *in vitro* significantly inhibits Na⁺, K⁺-ATPase activity from purified synaptic plasma membrane, suggesting a direct action of these compounds on the enzyme (Bavaresco et al., 2004). It is then conceivable that the inhibitory effect elicited by hypoxanthine on Na⁺, K⁺-ATPase activity could be one of the mechanism involved on the memory impairment observed.

The induction of oxidative stress caused by hypoxanthine infusion should not be excluded, since oxidative stress is also associated with memory deficits (Bickford et al., 1999; Serrano and Klann, 2004). Evidence showed that hypoxantine induces an increase in reactive oxygen species and/or lipid peroxidation and decreases brain antioxidant capacity (Bavaresco et al., 2005; Bavaresco et al., 2006; Bavaresco et al., 2007b; Beckman et al., 1987). It has been shown that the formation of free radicals by hypoxanthine/xanthine oxidase could contribute to the destruction of blood-brain barrier observed in ischemic brain tissue (Beckman et al., 1987). Moreover, oxidative stress induced by hypoxanthine inhibited Na⁺, K⁺-ATPase activity in striatum, cerebral cortex and hippocampus of rats (Bavaresco et al., 2004). In fact, it is then possible to suggest that the imbalance between free radical production and antioxidant defenses caused by hypoxanthine administration could lead to memory deficits found in the present study.

The biochemical events involved in memory process could be also modulated by neurotransmitters like serotonin and GABA. In this context, Prado-Alcalá et al. (2003) showed that post-training administration of the 5-HT2 receptor blocker ketanserine produced a memory retention deficit in rats. In addition, Ticku and Burch (1980) demonstrated that hypoxanthine could inhibit benzodiazepine and GABA binding to its receptor-like sites in rat brain membrane. Also elevate extracellular levels of hypoxanthine could bind to benzodiazepine agonist sites in GABA(A) receptor inhibiting memory process (Deutsch et al., 2005; Izquierdo and Medina, 1997; Savić et al., 2005). These evidences give support to the experimental impairment on memory formation obtained in present study.

In conclusion, our results show that intrastriatal hypoxanthine administration provoked memory impairment in rats submitted to step-down inhibitory avoidance task. Considering that Lesch–Nyhan patients present cognitive memory alterations, we suggest that it might be associated to the accumulation of hypoxanthine in brain.

Acknowledgements

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq — Brazil) and by

the FINEP Research Grant "Rede Instituto Brasileiro de Neurociência (IBN-Net)-# 01.06.0842-00".

References

- Ägren H, Niklasson F, Hallgren R. Brain purinergic activity linked with depressive symptomatology: hypoxanthine and xanthine in CSF of patients with major depressive disorders. Psychiatry Res 1983;9:179–89.
- Bavaresco CS, Zugno AI, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS. Inhibition of Na⁺, K⁺–ATPase activity in rat striatum by metabolites accumulated in Lesch-Nyhan disease. Int J Dev Neurosci 2004;22:11–7.
- Bavaresco CS, Chiarani F, Matte C, Wajner M, Netto CA, Wyse ATS. Effect of hypoxanthine on Na⁺, K⁺-ATPase activity and some parameters of oxidative stress in rat striatum. Brain Res 2005:1041:198–204.
- Bavaresco CS, Chiarani F, Wajner M, Netto CA, Wyse ATS. Intrastriatal hypoxanthine administration affects Na⁺, K⁺-ATPase, acetylcholinesterase and catalase activities in striatum, hippocampus and cerebral cortex of rats. Int J Dev Neurosci 2006;24: 411–7.
- Bavaresco CS, Chiarani F, Duringon E, Ferro MM, Cunha CD, Netto CA, et al. Intrastriatal injection of hypoxanthine reduces striatal serotonin content and impairs spatial memory performance in rats. Metab Brain Dis 2007a;22:67–76.
- Bavaresco CS, Chiarani F, Wannmacher CM, Netto CA, Wyse ATS. Intrastriatal hypoxanthine reduces Na(*),K (*)–ATPase activity and induces oxidative stress in the rats. Metab Brain Dis 2007b;22:1–11.
- Beckman JS, Liu TH, Hogan EL, Freeman BA, Hsu CY. Oxygen free radicals and xanthine oxidase in cerebral ischemic injury in the rat. Soc Neurosci Abstr 1987;13:1498.
- Bickford PC, Shukitt-Hale B, Joseph J. Effects of aging on cerebellar noradrenergic function and motor learning: nutritional interventions. Mech Ageing Dev 1999;111: 141–54.
- Boussaoud D, Kermadi I. The primate striatum: neuronal activity in relation to spatial attention versus motor preparation. Eur J Neurosci 1997;10:2152–68.
- Brunelli M, Garcia-Gil M, Mozzachiodi R, Scuri R, Zaccardi ML. Neurobiological principles of learning and memory. Arch Ital Biol 1997;135:15–36.
- Brunori M. Nitric oxide, cytochrome-c oxidase and myoglobin. Trends Biochem Sci 2001:26:21-3.
- Delwing D, Bavaresco CS, Monteiro SC, Matte C, Netto CA, Wyse AT. Alpha-Tocopherol and ascorbic acid prevent memory deficits provoked by chronic hyperprolinemia in rats. Behav Brain Res 2006;168:185–9.
- Deutsch SI, Long KD, Rosse RB, Mastropaolo J, Eller J. Hypothesized deficiency of guanine-based purines may contribute to abnormalities of neurodevelopment, neuromodulation and neurotransmission in Lesch–Nyhan disease. Clin Neuropharmacol 2005;28:28–37.
- Ferreira TL, Shammah-Lagnado SJ, Bueno OF, Moreira KM, Fornari RV, Oliveira MG. The indirect amygdala-dorsal striatum pathway mediates conditioned freezing: insights on emotional memory networks. Neuroscience 2008;153:84–94.
- Gibbs ME, Andrew RJ, Ng KT. Hemispheric lateralization of memory stages for discriminated avoidance learning in the chick. Behav Brain Res 2003;139:157–65.
- Gill KM, Mizumori SJ. Context-dependent modulation by D(1) receptors: differential effects in hippocampus and striatum. Behav Neurosci 2006;120:377–92.
- Glushchenko TS, İzvarina NL. Na⁺, K(⁺)-ATPase activity in neurons and glial cells of the olfactory cortex of the rat brain during the development of long-term potentiation. Neurosci Behav Physiol 1997;27:49–52.
- Izquierdo I, Medina JH. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 1997;68:285–316.
- Jinnah HA, Friedmann T. Lesch Nyhan disease and it variants. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic and Molecular Basis of Inherited Disease. New York: McGraw-Hill; 2001. p. 2537–69.

- Kisch SJ, Fox IH, Kapur BM, Lloyd KG, Hornykiewicz O. Brain benzodiazepine receptor binding and purine concentration in Lesch-Nyhan syndrome. Brain Res 1985;336: 117-23.
- Ma MHY, Stacey NC, Connolly GP. Hypoxanthine impairs morphogenesis and enhances proliferation of a neuroblastoma model of Lesch Nyhan syndrome. J Neurosci Res 2001:63:500–8.
- Matthews WS, Solan A, Barabas G, Robey K. Cognitive functioning in Lesch–Nyhan syndrome: a 4-year follow-up study. Dev Med Child Neurol 1999;41:260–2.
- Medina JH, Schroder N, Izquierdo I. Two different properties of short- and long-term memory. Behav Brain Res 1999;103:119–21.
- Nyhan WL, Oliver WJ, Lesch M. A familial disorder or uric acid metabolism and central nervous system function II. J Pediatr 1965;67:439–44.
- Palmour RM, Heshka TW, Ervin FR. Hypoxanthine accumulation and dopamine depletion in Lesch-Nyhan disease. Adv Exp Med Biol 1989;253:165-72.
- Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. San Diego: Academic Press: 1986.
- Prado-Alcalá RA, Solana-Figueroa R, Galindo LE, Medina AC, Quirarte GL. Blockade of striatal 5-HT2 receptors produces retrograde amnesia in rats. Life Sci 2003;74: 481-8
- Puig JG, Mateos FA, Jimenez ML, Ramos T, Capitan MC, Gil AA. Impaired renal excretion of hypoxanthine and xanthine in primary gout. Adv Exp Med Biol 1989;253A: 269–76
- Ragozzino KE, Leutgeb S, Mizumori SJ. Dorsal striatal head direction and hippocampal place representations during spatial navigation. Exp Brain Res. 2001;139:372–6.
- Reis EA, Zugno AI, Franzon R, Tagliari B, Matte C, Lammers ML, et al. Pretreatment with vitamins E and C prevent the impairment of memory caused by homocysteine administration in rats. Metab Brain Dis 2002;17:211–7.
- Reis-Lunardelli EA, Castro CC, Bavaresco C, Coitinho AS, da Trindade LS, Perrenoud MF, et al. Effects of thyroid hormones on memory and on Na(*), K(*)–ATPase activity in rat brain. Curr Neurovasc Res 2007;4:184–93.
- Rossato JI, Zinn CG, Furini C, Bevilaqua LR, Medina JH, Cammarota M, et al. A link between the hippocampal and the striatal memory systems of the brain. An Acad Bras Cienc 2006;78:515–23.
- Sánchez-Iglesias S, Rey P, Méndez-Alvarez E, Labandeira-García JL, Soto-Otero R. Timecourse of brain oxidative damage caused by intrastriatal administration of 6hydroxydopamine in a rat model of Parkinson's disease. Neurochem Res 2007;32: 99–105.
- Sato T, Tanaka K, Ohnishi Y, Teramoto T, Irifune M, Nishikawa T. Effects of steroid hormones on (Na⁺, K⁺)-ATPase activity inhibition-induced amnesia on the step-through passive avoidance task in gonadectomized mice. Pharmacol Res 2004;49:151–9.
- Savić MM, Obradović DI, Ugresić ND, Bokonjić DR. Memory effects of benzodiazepines: memory stages and types versus binding-site subtypes. Neural Plast 2005;12: 289–98.
- Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 2004;3:431–43.
- Sherry JM, Crowe SF. Ouabain does not impair reconsolidation following a reminder of passive avoidance learning in the day-old chick. Neurosci Lett 2007;423:123–7.
- Ticku MK, Burch T. Purine inhibition of [3H]-gamma-aminobutyric acid receptor binding to rat brain membranes. Biochem Pharmacol 1980;29:1217–20.
- Visser JE, Bär PR, Jinnah HA. Lesch-Nyhan disease and the basal ganglia. Brain Res Bull 2000;32:449-75.
- Wyse ATS, Bavaresco CS, Reis EA, Zugno AI, Tagliari B, Calcagnotto T, et al. Training in inhibitory avoidance causes a reduction of Na⁺, K⁺–ATPase activity in rat hippocampus. Physiol Behav 2004;80:475–9.